从信号完整性角度谈选择示波器

2020-02-11来源: elecfans关键字:信号完整性  示波器

 我们经常听到身边的硬件工程师们提到关于信号完整性的话题。  那么信号完整性具体是指什么呢?


信号完整性(Signal Integrity:简称SI),指信号线上的信号质量,是信号在电路中能以正确时序和电压做出响应的能力。


当电路中信号能以要求的时序、持续时间和电压幅度到达接收端时,该电路就有很好的信号完整性。信号完整性问题包括误触发、阻尼振荡、过冲、欠冲等,会造成时钟间歇振荡和数据出错。


设计环节中,信号完整性是必不可少的考虑因素,当然,在信号测试和调试环节,我们也应对信号完整性问题引起重视,否则会引起测量结果误差,影响工程师判断,调试和改进电路的方向。


在基础的电子信号测量中,我们通常会选用示波器来对信号进行测量。因此,如何选择一款有利于信号完整性测量的示波器尤为重要。


接下来我们主要从几个大方向介绍了哪些因素会影响信号完整性的测量。(文中主要讨论的为数字示波器)。  


No.1

带宽

带宽是我们对于示波器最直接认知的一个指标,他指的是当频率提高到某个值,输入信号幅值刚好被衰减3dB 时所对应的频率点。


对于信号完整性测量来说,带宽越高越好。这句话从某种意义上来讲是正确的。


我们知道,任何信号都可以分解成无数次谐波的叠加。理论上来说,带宽覆盖被测信号能量的99.9%,测量的误差可以小于3%。


根据我们一贯的经验,带宽的要求是被测信号的5倍。但是有这样一种信号,他的基频很低,但是却有快速的上升时间,很有可能会引起振铃现象,这意味着高次谐波能量占的比重大。


这个时候,5倍法不再适用,并且我们无法得知,哪个频率点我们刚好能覆盖99.9%的能量。如果选择的带宽较低,则意味着这些高频分量会被漏掉,我们没法准确地在示波器上重建信号。


所以,我们在考虑如何选择示波器时,不仅要考虑带宽的影响,同时也需要考虑到上升时间的影响。这两者都是影响信号完整性的重要因素。


No.2

上升时间

事实上,上升时间并不仅仅指前文我们提到的信号的上升时间,对于示波器来讲,也是具有上升时间这个指标的。


我们为什么把上升时间拿到和带宽同等的高度来分析它?


试想,两个具备相同带宽性能的示波器却具有不同的上升时间。那么对于我们测量信号而言,选择哪一个才能更加准确地测量信号?


尤其是在测量一些快沿和高速串行信号等复杂信号时。


首先我们先明确示波器的上升时间指的是什么。


理论上来讲,他是示波器放大器的阶跃响应,反映的是示波器前置放大器的瞬态响应能力。基于RC模型的高斯响应我们可以推导出:

上升时间=0.35/带宽

事实上,实际示波器带宽和上升时间的关系可能是0.35-0.5。这取决于示波器频响曲线的形状,有些示波器使用的是高斯型,有些是四阶贝塞尔型,有些是升余弦型。


但在实际测量中,示波器配合探头测量信号,这样,示波器和探头就组成了一个系统,我们可以得到以下的结论:

Rise_Time Measure2 

=Rise_Time scope2

+Rise_Time Probe2

+Rise_Time Signal2

示波器和探头的上升时间越小,越有利于真实地重建信号,对信号测量的误差影响越小。


这意味着就算是相同的带宽,示波器测量信号完整性的能力还可以通过示波器的上升时间来加以区分。


示波器真实的上升时间无法通过带宽来进行计算, 最可靠的方法只能是通过一个理想的阶跃信号去测量。


No。3

频率响应

除了考虑上述带宽和上升时间以外,同时我们也应考虑在带宽内,是否具有平坦的响应。

不平坦的带内响应,很有可能会导致信号的失真。所以,我们在示波器具备相同带宽的同时,我们也可以要求示波器厂商提供示波器的频响图,以便考察。


如图为SDS3000X示波器的幅频特性曲线,可以看出,4个通道在带内的曲线都很一致且平滑。

图1 SDS3000X示波器幅频特性曲线


No。4

ADS

数字示波器的本质是将模拟信号采样为一个一个的离散点。

连续的模拟信号在转换为数字信号的离散化过程中 ,由于没有无限数量的离散化的数字电平来重组连续的模拟信号,实际的模拟电压值与对应的数字化电平值之间总会有偏差,这个偏差值叫量化误差。


而模数转化器(ADC)的位数则决定了示波器的最小量化电平,也确定了数字示波器的分辨率。 


ADC的位数越高,则分辨率越高。8位的ADC代表了28=256个量化级别;10位的ADC则代表了210=1024个量化级别;12位的ADC代表了212=4096个量化级别。


ADC的位数越高,则意味着量化误差则越小,越有利于信号完整性测量。


除此之外,在我们只能选择既定的ADC位数的示波器之后。要想获得最佳的分辨率,要尽量让波形占满栅格,才能充分利用ADC的范围。如果只让波形占1/2栅格,则测量精度会下降到7-bit。因此合理地选择选择垂直缩放的设置,能获得更加精确的测量结果。


如下图所示为分别让信号占据满栅格,1/2栅格,1/4栅格….的情况,可以看到,测量的结果出入很大。

图2 不同情况下的测量结果


No.5

ENOB

ENOB(Effective number of bits)是衡量示波器动态性能的一个指标。

一些示波器厂商会给出ADC的ENOB值,从某种程度上来讲,8位的ADC的确能够提供8位的精度和分辨率,这只是针对DC信号或者一些低速信号而言。


随着信号速度的提高,动态数字化性能会显著下降。当达到某一特定临界值,8位的ADC可能降到6位或者4位或者更低的有效位数。


数字转化器性能的下降主要表现为信号上的噪声水平增加。此处的噪声水平增加主要是指输入信号和数字化输出中叠加的随机误差。


我们可以用信噪比(SNR)来衡量此系统的好坏。


SNR=

ENOB=(SNR-1.76)/6.02

当然,对于示波器而言,单纯地讲ADC的ENOB是没有意义的,评估整个示波器系统的ENOB才具有实际意义。


例如一个ADC具有非常优秀的ENOB,但若是前端噪声较大,则会影响整个系统的ENOB.

在SDS2000X示波器中,提供了增强分辨率模式(ERES采集模式),通过数字滤波的方式降低噪声的带宽,能有效提高信噪比,最高可等效增强3 Bit ENOB,等效提高了示波器的垂直分辨率,且无须依赖于信号的周期性和触发点的稳定。这个模式有利于于信号完整性测量。

图3 SDS2000X增强分辨率模式


我们在判定整个系统的ENOB是否会影响信号的测量以及影响信号完整性时,一定要留意自己需要测量的是什么信号。


例如高速串行信号在一些频点上具有谐波,这些谐波可以通过示波器系统而不受ENOB降低的影响。


No.6

噪声

在示波器不外接任何信号的前提下,我们依然可以在示波器的显示屏上观察到噪声信号,我们称这个信号为示波器的底噪。


示波器的噪声可能有很多来源,包括示波器的模拟前端,模数转化器,探头甚至是连接测量电路的电缆。


有利于信号完整性测量的示波器应该具有较小的噪声。


我们在测试仪器噪声的时候,还要注意影响噪音测试结果的因素很多,比如带宽、采样率、通道垂直分辨率、水平时基和通道耦合方式等。


总体来说,业界对此的共识如下:

带宽越高,噪声越大,因为带宽越高采集到的信号谐波分量越丰富。

水平时基分辨率越低,噪声越大,即时基格度越粗,噪声显示越大。


对地耦合方式下噪音最小,因为外界信号和电磁环境干扰被隔离;如果要比较真实的仪器噪音,建议DC耦合,此时全带宽开启,所有示波器处于真实的测试环境中。


如果我们需要观察小信号或者一些微小变化,那么我们需要选用底噪更小的示波器。

如下我们比较了几款市场上较常见的示波器的底噪:

图4 SDS3000X底噪

图5 甲品牌底噪

图6 乙品牌底噪

关键字:信号完整性  示波器 编辑:什么鱼 引用地址:http://news.2689mr.com/Test_and_measurement/ic487878.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:DSO示波器的三种必不可少的工具简介
下一篇:怎样把示波器用作波形记录仪

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

示波器重要“关键指标”—测量精确度/信号完整性
整个电子行业对速度及性能的不懈追求正不断改变高端示波器的标准。虽然当评估示波器时,带宽曾经是客户和销售商关注的“关键指标”,然而捕获和分析当今最快串行和光信号所需要的精确度(即:测量精确度和信号完整性)已经成为当前最重要的因素。 然而,什么是测量精确度? 带宽是一种用于比较一台仪器和另一台仪器差别的简单方式 ——具有最高带宽的那台一定是最好的,对吗?可以肯定的是,带宽是很重要的,对于高速应用而言,高带宽是必需的。然而,示波器的真正目的是要尽可能准确地显示感兴趣的信号,而且背后更为复杂,涉及仪器的基本设计、探头架构和连接配件、以及带宽之外的参数(包括上升时间、采样率和抖动本底噪声)。当选择示波器时
发表于 2020-09-11
<font color='red'>示波器</font>重要“关键指标”—测量精确度/信号完整性
高速数字电路设计中信号完整性
摘要 信号完整性是许多设计人员在高速数字电路设计中涉及的主要主题之一。信号完整性涉及数字信号波形的质量下降和时序误差,因为信号从发射器传输到接收器会通过封装结构、PCB走线、通孔、柔性电缆和连接器等互连路径。 当今的高速总线设计如LpDDR4x、USB 3.2 Gen1/2 (5Gbps/10Gbps)、USB3.2x2 (2x10Gbps)、PCIe和即将到来的USB4.0 (2x20Gbps) 在高频数据从发送器流向接收器时会发生信号衰减。本文将概述高速数据速率系统的信号完整性基础知识和集肤效应、阻抗匹配、特性阻抗、反射等关键问题。 导读 随着硅节点采用10nm、7nm
发表于 2020-09-11
高速数字电路设计中<font color='red'>信号完整性</font>
使用重定时器和转接驱动器保持以太网信号完整性
本文作者:Lin Zhihong,是德州仪器(TI)接口业务的产品营销工程师。互联网上视频和云应用的不断增加,正促使数据中心和云存储朝着400G以太网络发展,以满足带宽需求。随着数据使用量的增加,维护通信和数据中心设备中千兆以太网传输线上高速网络信号完整性的挑战也随之增加。当信号通过PCB、连接器和电缆时,其数据传输速率可能会严重降低。这种信号失真将导致系统无法通过以太网标准符合性测试,并造成与其他网络设备的互操作性变差。设计者通常需要使用信号调节器,如转接驱动器或重定时器来保持信号质量和系统性能。信号衰减的根本原因信号衰减的方式因传输介质而异,包括PCB、铜缆或光缆、信号线上的无源元件和连接器。信号在时域和频域都会失真。信号衰减
发表于 2020-08-31
使用重定时器和转接驱动器保持以太网<font color='red'>信号完整性</font>
获得信号完整性的测量技术
TDR(时域反射)测量可以为一根电缆或 PCB(印制电路板)走线的信号完整性提供直接描述,以及分析 IC 的性能与故障。TDR 测量沿电缆或 PCB 走线发送一个快速脉冲,并显示返回的反射,用于表示阻抗的变化。阻抗变化可以非常强,如开路或短路情况,或者是数 fF 这么微小,如一个 PCB 过孔。该技术以 OTDR(光 TDR)形式,利用了电子系统中介电常数与光学系统中折射率之间的等效性这一特点。TDR 的历史上世纪30 年代晚期的工程师开始采用 TDR 测量土壤的介电常数与水分含量。今天,很多工程师仍然用这种技术作多种地理测量,如地震断层与桥梁“冲刷”,这是在快速河流下出现的危险情况,尤其是在冰冻条件下。流水从桥墩、埋藏设备和类似
发表于 2020-03-06
获得<font color='red'>信号完整性</font>的测量技术
示波器的信号完整性意义是怎样的
对任何优秀的示波器系统来说,准确重建波形的能力都是关键,这种能力称为信号完整性。泰克示波器类似于一台摄像机;它捕获信号图像,然后可以观察和解释信号图像。信号完整性的核心有几个关键问题:在拍摄时,拍到的是不是实际发生事件的准确图像图像清楚还是模糊?每秒可以拍摄多少张这么准确的图片示波器不同的系统和性能功能结合在一起,影响着其提供最高信号完整性的能力。探头也影响着测量系统的信号完整性。信号完整性影响着许多电子设计学科。但直到几年前,它对数字设计人员来说还不是什么大问题。设计人员可以依赖逻辑电路,像布尔电路一样操作。当时,有噪声的、不确定的信号发生在高速电路中,RF设计人员还不用担心这些问题。数字系统开关速度慢,信号以可预测的方式稳定
发表于 2020-02-12
示波器的<font color='red'>信号完整性</font>意义是怎样的
为什么说信号完整性对于示波器来说是个问题
让我们看一下当前数字设计中信号劣化的部分具体成因。为什么现在这些问题比过去几年盛行得多了呢?答案是速度。在“低速的旧时代”,保持可以接受的数字信号完整性只需注意细节就可以了,比如时钟分配、信号路径设计、噪声余量、负荷影响、传输线效应、总线端接、解耦和配电。所有这些规则仍然适用,但是今天,总线周期时间比20年前快了100倍!过去需要几微秒的事务处理现在只需要几纳秒。为实现这种改进,边沿速度也已经加快,其比20年前快了100倍。这一切还好。然而,某些实际物理状况使得电路板技术不能跟上发展步伐。芯片间总线的传播时间在过去几十年中几乎一直没有变化。当然,其尺寸已经缩小,但仍需要为C器件、连接器、无源器件、当然还有总线轨迹本身提供电路板空间
发表于 2020-02-11
为什么说<font color='red'>信号完整性</font>对于示波器来说是个问题
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 信号源与示波器 分析仪 通信与网络 视频测试 虚拟仪器 高速串行测试 嵌入式系统 视频教程 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 2689mr.com, Inc. All rights reserved
吉林快三机器人 送彩金棋牌10可提现 pk10机器人 赛车网站首存送彩金 2019送彩金的娱乐场 百家乐送彩金 篮彩送彩金 mg游戏送彩金无需申请 澳客彩票 pk10机器人