技术文章—功率密度与效率如何权衡

2019-11-13来源: 贸泽电子关键字:功率密度  宽带隙  电力电子
image.png

能量转换效率是一个重要的指标,各制造商摩拳擦掌希望在95%的基础上再有所提升。为了实现这一提升,开始逐渐采用越来越复杂的转换拓扑,如移相全桥(PSFB)和LLC变换器。而且二极管将逐渐被功耗更低的MOSFET所取代,宽带隙(WBG)器件更是以其惊人的开关速度被誉为未来的半导体业明珠。


然而,最终用户要放眼全局,更关心的是整个系统或流程的效率,即在履行环保义务的同时谋求利润最大化。他们明白,当考虑到整个寿命周期成本时,逐步减少能量转换过程中的小部分损失并不一定会带来总体成本或环境效益的大幅提升。另一方面,将更多能量转换设备集成到更小的封装中,即提高“功率密度”,可以更有效地利用工厂或数据中心的占地面积,并以现有的管理成本创造出更多的价值。


本文分析了追求能源转换效率在节能、采集/处理成本和机柜/工厂车间利用率中所占百分比的实际成本,并与增加功率密度和系统效率进行了比较。


最大化效率与成本


在电力电子领域,效率是一个很容易被概念化的术语——100%就是好,0%就是差。但这与你所占的角度有关,例如,对于数据中心而言,其整体电力效率近乎为零,也就是说从电网获取的所有电力几乎全部转换为刀片服务器、电源和冷却系统电子设备所产生的热量。但如果能充分利用这些热量为数据中心带来收入,效果就完全不同了,这也是在多数行业广为采纳的一种方法。所以如果你想在获取利益的同时节省成本和空间,真正的问题是如何在最大化生产力的同时最小化总功耗。


数据中心管理人员深知这一点,而且每天都需要考虑如何在提升数据处理能力和速度的同时尽可能降低电费,并从资本投资中获得回报。他们别无选择,只能增加服务器,即使会带来数千瓦的功耗,但可以计算出因此而得到的货币价值,并抵消掉额外的能源和资金成本。在工业上,如果需要增加一台100kw的电机,在产生更多净输出的同时,也会不可避免地增加电机驱动及供电压力。在所有行业中,电源本身没有增加任何商业价值,但又不可缺少,因此,电力供应中消耗的每一项运营费用和每一点功率损耗都被视为降低了利润。这无形中给电力电子制造商带来了更多压力,要求他们通过提高电力效率来降低损失。


效率是个相对的概念


能源转换效率似乎很容易定义,可以用公式表述为“输出功率除以输入功率,以百分比表示”,输出功率与输入功率之差即为能量转换过程中流失的热量。问题是,如果不考虑功率等级以及功率等级如何随操作环境和操作条件而变化,那么效率就仅仅是转换器之间的比较标准,而无其他任何意义。广义上来说,就是需要找到设备的最佳运行条件。转换器很少在接近最大额定功率的情况下工作,因此通常设计为在最大额定负载的50%到75%左右达到峰值效率,并有一定的曲度,使得零负载时的效率降到零。在轻负载时,转换器设计之间可能存在巨大的差异,因此在空转条件下,一个电源的功率损耗可能是另一个的几倍。如图1所示,在百分之五负载时,橙色线表示的转换器损耗是蓝色线的三倍多。因此,轻载损耗对总能量消耗有较大的影响。


image.png
图1:同类电源转换器的轻载效率可能会有很大差异

幸运的是,有一些标准规定了各等级的效率曲线形状,例如具有不同级别的“80-PLUS计划”。“钛金”是最高级别,115V系统要求50%负载下的最低效率为94%,10%负载下的最低效率为90%;对于230V系统而言,两种情况下的效率分别为96%和90%(表1)。

image.png

这些限制很难实现。达到94%的钛金等级意味着减少四分之三的电力损失。由于电源的额定功率一定,这就意味着在效率仅提高14%的情况下,必须将功率损耗从250瓦降低到64瓦。通过对现有设计进行微调是无法做到的,因此需要重新考虑转换器的拓扑结构。通过采用同步驱动型MOSFET、PSFB和LLC谐振拓扑取代二极管,可以限制开关转换过程中的损耗,而且随着碳化硅(SiC)和氮化镓(GaN)等新半导体技术的出现,还可以在没有功率损耗的情况下更快地进行开关。就连不起眼的主电源整流桥也已演变成混合排列的MOSFET,成为了功率因数校正电路的关键部分。虽然这些演变所要付出的成本都不低,但却不会带来“新风险”。此外,客户和电力供应制造商对更高功率的需求也呈螺旋式上升趋势,要求达到99%甚至更高。

小改进而要付出的代价


随着能源转换效率接近100%,难度呈指数级增加。从97%到98%意味着减少三分之一的损耗;98%到99%意味着再减少一半的损耗。在任何转换器设计中,将损耗减少50%都可能迫使完全从头开始,而且唯一的方法是使用更复杂的技术和更昂贵的组件,并通常以牺牲尺寸为代价。1kW的电源在效率为98%时的损耗只有20.4W。为了实现99%的效率和10.1W的损耗,需要付出多少代价?对于1kW的负载,减少1%的损耗就意味着节省10.1W,但需要如何设计呢?

image.png

当然,单就节能来看,所有的付出都是值得的,但我们看问题要从整体出发,不能只局限于一个方面。Rocky Mountain Power公司的数据表明,美国工业用电价格约为每千瓦时7美分。如果1kW电源在正常运行时的使用寿命是5年或约44000小时,则减少10.1W的损耗可节省约31美元,然而负载的电源所增加的成本却超过3100美元。更换电源会带来购置成本、采购和鉴定间接费用、安装成本,以及与数百个组件生产、包装和运输相关的碳足迹问题、旧设备处理成本,还有新产品的功能风险。因此如果原电源仍能可靠运行,31美元的节省也就毫无意义了。追求高效率这件事情自身恐怕会是一项昂贵的事业。


关键字:功率密度  宽带隙  电力电子 编辑:muyan 引用地址:http://news.2689mr.com/gykz/ic479797.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:“慧”来电,享无忧, 台达Amplon RT系列5-20kVA UPS新机种问市
下一篇:Ampaire高效环保电气系统推动让航空旅行更绿色

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

儒卓力新品:Recom高功率密度紧凑型电源模块
带有降压稳压器的Recom RPX-2.5电源模块采用集成的倒装芯片技术,提供高功率密度和优化的散热管理功能。该器件采用薄型QFN封装 (4.5mm x 4mm x 2mm)和集成式屏蔽电感器,非常适合空间受限的应用。 这款DC / DC转换器的输入电压范围为4.5至28V,可以使用5V、12V或24V电源电压进行运作。Recom RPX-2.5电源模块的最大输出电流为2.5A。通过使用两个电阻器,可以将输出电压设置在1.2V至6V范围。为了提高安全性,输出具有过流和过热保护功能,并具有永久短路保护功能。此外,该模块还包含欠压锁定(UVLO)功能,其电源效率高达92%。 RPX-2.5电源模块的使能引脚具有内部
发表于 2020-05-21
儒卓力新品:Recom高<font color='red'>功率密度</font>紧凑型电源模块
英国Equipmake公司开发全新电机 功率密度全球最佳
据国外媒体报道,英国工程公司Equipmake正在开发号称“世界上功率密度最大的永磁电动机”。Equipmake公司正在研发的电机与3D打印公司Hieta公司合作,重量被大幅降低。这款全新的电机重量不到10千克,但峰值功率将为295bhp。 作为参考,捷豹I-Pace的两台电动机各重约40kg,各可产生197bhp的功率。受益于重量的降低,该全新电机每公斤27bhp的输出功率使其功率密度等级比任何市售电动机都要好。该设备的轻巧主要归功于其结构中金属的使用量被大幅降低,并使用了3D打印外壳,这一外壳极薄。这种构造方法的另一个好处是提高了热效率,这意味着电动机可以更快地旋转更长时间而不会过热。尽管其性能优越,但由于用料节省,该全新电机
发表于 2020-03-05
英国Equipmake公司开发全新电机 <font color='red'>功率密度</font>全球最佳
技术文章—小尺寸高功率密度
背景知识 复杂的高功率密度数字集成电路(IC),例如图形处理器单元(GPU)和现场可编程门阵列(FPGA),常见于功能丰富的电子环境中,包括: 汽车医疗电信数据通信工业通信游戏设备消费类音频/视频 市场渗透率如此之高,全球对大电流低压数字IC的需求激增也就不足为奇了。当前全球市场规模预估超过18亿美元,预计该市场在2018年至2025年期间年增长率为10.87%,将达到37亿美元。作为该市场最大的组成部分之一,预计FPGA的市场规模到2025年底将达15.3亿美元。数字IC市场的其他代表产品还包括GPU、微控制器和微处理器、可编程逻辑器件(PLD)、数字信号处理器(DSP)和专用集成电路(ASIC
发表于 2020-03-04
技术文章—小尺寸高<font color='red'>功率密度</font>
高集成高可靠高功率密度,安森美USB-C™ PD 3.0控制器问市
推动高能效创新的安森美半导体,推出了一对完全符合USB-C PD 3.0标准的新器件。FAN6390自适应充电控制器使USB-C PD 3.0可编程电源(PPS)标准易于集成到系统中,而NCP12601是高度集成的多模式反激控制器,用于强固的高性能离线电源如适配器 。新器件极大地简化了基于USB-C PD 3.0的电源设计,提供了更高集成度和可靠性,赋能更高功率密度的设计,用于各种电子设备的应用,如智能手机充电器、AC-DC电源适配器和辅助电源/内部电源管理等。 安森美半导体延续其在电源管理和USB-C PD方案的领先地位,终推出这首款集成的同步整流器和自主控制器产品,简化次级端系统设计。FAN6390是安森美半导体
发表于 2020-02-27
高集成高可靠高<font color='red'>功率密度</font>,安森美USB-C™ PD 3.0控制器问市
儒卓力提供具有高功率密度的威世N-Channel MOSFET
威世的SiSS12DN 40V N-Channel MOSFET是为提高功率转换拓扑中的功率密度和效率而设计。它们采用3.3x3.3mm紧凑型PowerPAK 1212-8S封装,可提供低于2mΩ级别中的最低输出电容(Coss)。 SiSS12DN MOSFET在10V下具有1.98mΩ的低导通电阻(RDS(ON)),可以最大限度地降低传导损耗。此外,该器件具有680pF的低输出电容(Coss)和28.7nC的优化栅极电荷(Qg),减少了与开关相关的功率损耗。 与采用6x5mm封装的相似解决方案相比,TrenchFET Gen IV功率MOSFET占用的印刷电路板(PCB)空间减少了65%,从而实现了更高
发表于 2020-02-19
儒卓力提供具有高<font color='red'>功率密度</font>的威世N-Channel MOSFET
Vishay 30Vp沟道TrenchFET第四代功率MOSFET,大幅提高功率密度
日前,Vishay Intertechnology, Inc.推出新型-30 V p沟道TrenchFET®第四代功率MOSFET---SiSS05DN,器件采用热增强型3.3 mm x 3.3 mm PowerPAK® 1212-8S封装,10 V条件下导通电阻达到业内最低的3.5 mW。于此同时,导通电阻与栅极电荷乘积,即MOSFET在开关应用的重要优值系数(FOM)为172 mW*nC,达到同类产品最佳水平。节省空间的Vishay Siliconix SiSS05DN专门用来提高功率密度,占位面积比采用6mm x 5mm封装的相似导通电阻器件减小65 %。 、日前发布的MOSFET导通电阻比上一代解决方案低26
发表于 2020-02-11
Vishay 30Vp沟道TrenchFET第四代<font color='red'>功率</font>MOSFET,大幅提高<font color='red'>功率密度</font>
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 2689mr.com, Inc. All rights reserved
2019白菜网送彩金 正规官网送彩金 ag娱乐平台送彩金 澳客彩票走势 诚信群机器人 免费送彩金的棋牌 送彩金论坛 ag送彩金 2019百家乐18元送彩金 真人百家乐送彩金