技术文章—优化宽禁带材料器件的半桥和门驱动器设计

2020-08-31来源: EEWORLD关键字:宽禁带  门驱动器  SiC  GaN

现代宽禁带功率器件(SiC, GaN)上的开关晶体管速度越来越快,使得测量和表征成为相当大的挑战,在某些情况下几乎不可能实现。隔离探测技术的出现改变了这种局面,通过这一技术,设计人员终于能够放心地测量以前回避的半桥和门驱动器波形。通过详细了解相关挑战,并使用适当的探测技术,电源工程师可以更加迅速、高效地表征和优化其设计。

 

半桥电路(图1)广泛用于功率电子领域的多种应用,是现代设计中有效转换电能使用的基本电路。但是,只有在半桥、门驱动器和布线正确且优化设计时,这种电路的优势才能得到实现。在测量结果与预期结果不一致时,可能很难提取与被测器件有关的有意义的细节。更糟糕的是,基于探头位置和其他因素,波形可能会明显变化,最终会让设计人员得不偿失。

 

 

图1。 半桥电路广泛用来在现代设计中高效转换电能。

 

效率和功率密度要求经常会随着应用设计要求变化,如是否要优化性能价格比。在功率密度中改善能效的要求,决定着设计的拓扑结构,进而影响着要考虑的测量设备和技术。表1汇总了半桥和门驱动器最重要的指标和测量。

 

 

表1。 门驱动器和半桥配置最重要的测量。

 

准确进行功率测量离不开测量系统在多个方面的性能,包括电压处理、共模抑制、连接能力、温度处理能力、测量非常小的电流的能力。尽管功率设计要求日新月异,但测试测量技术的实际发展一直有些滞后。在某些情况下,设计人员不得已开发定制测量解决方案,或只能近似获得部分测量,忽视可能的优化。

 

在最基础的层次上,这些测量使用示波器及一套相应的探头执行。在进行准确可靠的功率测量方面,示波器几乎不成问题。而最大的挑战是从测试点到示波器获得信号。因此,选择适当的探头完成工作至关重要,不管是无源探头还是单端探头,是传统高压差分探头、电流探头还是隔离探头。

 

单端探头 – 低压侧测量

 

大多数示波器都会配有一套无源或单端探头。这些探头只能准确地测量以示波器地电平为参考的信号,且限于进行低压侧测量。通过隔离示波器,或使用一对探头进行伪差分测量(参见后面的讨论),您可以使用无源探头执行高压侧测量,但一般不推荐采用这种方法。

 

在考虑某项测量任务需要多高的探头性能时,人们一般会把重点放在带宽上。传统思维认为,带宽越高,性能就越高。的确,带宽是一个重要指标,它决定了可以测量正弦波峰峰值幅度的最高频率。但实际上,您并不是在频域中测量正弦波,而是要显示和测量信号随时间变化,也就是在时域中测量信号。

 

因此,半桥和门驱动器测量中最应关注的性能指标是上升时间。上升时间可以从带宽中计算得出,但如果想可靠地了解测量系统的上升时间和全部时间响应,唯一的方式是使用阶跃信号来实际测量上升时间,这个阶跃信号要远远快于您测量的信号。

 

测量系统如果上升时间性能不足,那么就会出现阶跃响应畸变,如图2所示,包括非线性度、变圆和顶降。可能很难确认这些畸变是实际来自测量系统还是来自被测器件,只有通过表征测量系统才能找到真正答案。为避免这些测量误差,选择的探头的上升时间一定要快于被测器件的上升时间。

 

 

图2. 在功率器件测量精度中,上升时间指标要比带宽指标更重要。

 

图3显示了快速探头的意义,其中使用1 GHz无源探头测量高速FET驱动器的低压侧,该驱动器的产品资料中显示上升时间< 1 ns。由于这只探头的上升时间指标在450 ps左右,所以我们能够测量略高于500 ps的上升时间。如果进行这一测量时使用的探头上升时间较慢,比如500 MHz探头,那么波形前面拐角处的高频成分会变圆。

 

 

图3. 由于450 ps上升时间指标,1 GHz泰克TPP1000无源探头能够准确地测量高速FET。

 

测量门驱动器电流

 

在测量门驱动器电流时,许多设计人员使用外加电流分流器,而不是电流探头,原因很简单,因为使用电流探头测量环路的电感会影响电路。通常来说,设计中在门驱动器和门之间会已经串联了一个电阻器。为使插入阻抗达到最小,电流分流器的阻值会保持得非常低,所以经过电流分流器的电压下跌也会非常低。通过先测得经过电流分流器的电压下跌值,然后再除以电阻器的已知电阻,可以得出电流。

 

把电流分流器连接到低压侧上,通常意味着一个端子接地。放在低压侧与放在高压侧的主要差异,是放在低压侧会降低或有效消除共模电压,共模电压会在电流分流器的任意一侧同时同相出现。因此,一般推荐在低压侧放置电流分流器,特别是在高压情况下。在高流应用中,接地弹跳会显示为共模信号。

 

隔离示波器

 

打破接地环路的技术之一,是“隔离示波器”或隔离被测电路。浮地会打破与接地的连接,在理论上可以在两个测试点之间进行差分测量,因为示波器接地已经被破坏。这种方法本身就是危险的,因为它破坏了触电保护,还可能会损坏测量设备。

 

浮动测试可能适用于某些测量,特别是在非常低的频率上,但要注意如果没有低阻抗接地连接,来自示波器的放射辐射和传导辐射可能会以噪声形式干扰测量。另外注意,在较高频率中断接地时,可能并不会中断接地环路,因为“浮动”电路会一直通过大的寄生电容保持耦合接地,从而导致振铃和波形失真。图4显示了高压侧门驱动器上的浮动测量。振铃和失真很明显,出现了高达28 V过冲。

 

 

图4。 在这个高压侧门驱动器浮动测量中,明显有振铃、失真和28 V过冲。

 

也可以使用伪差分测量(而不是无源探头),可能满足某些低频信号测量。通过进行两个地电平参考的信号测量,使用示波器对两条示波器通道进行减法运算,可以完成测量。在图5中,示波器从CH1的波形中减去CH2的波形,得到红色波形。两个输入必须设置成相同的标度,探头必须一模一样且紧密匹配。这种技术中的共模抑制比(CMRR)很差,如图5所示,特别是在更高频率下,可能会超过示波器输入范围。CMRR是指示波器在进行差分测试时抑制两个测试点的共模电压的能力。

 

 

图5. 伪差分测量性能有限,但对拥有低共模信号的超低频信号测量足够了。

 

差分探头

 

对大多数GaN和SiC应用,差分探头是准确进行低压侧测量和某些高压侧测量的很好选择。但对性能更高的器件来说,最可能的情况是传统高压差分探头并不是最佳选择,因为其在更高的频率下共模抑制能力不足。在执行高压侧电压测量时,这成为一个明显的问题,因为要在快速开关跳变过程中,在存在大的共模电压的情况下测量小的差分电压。

 

一个常见的误解是差分探头是浮动的。其实,传统差分探头基于差分放大器,差分放大器则连接到接地上。遗憾的是,这种连接限制了共模电压范围,导致频率额定值下降,产生接地弹跳,在带宽超过一定MHz时会限制共模抑制比。

 

在测试通电的GaN或SiC器件时,这些局限性尤其明显,因为这些器件拥有超快速开关速率,甚至有标称的共模电压。例如,100 MHz带宽差分探头在DC时提供了-70 dB CMRR,在1 MHz时提供了-50 dB CMRR,而在100 MHz时则下降到-27 dB CMRR,大约是22 : 1。

 

探头产品技术资料中很难看到这么差的指标,因为额定值随频率下降不可能成为厂家推广的指标。您需要翻查用户手册,才会找到像图6这样的示图,但我们很容易就能计算出CMRR较差的影响。例如,对600 V共模电压,得到的误差是27 V (600除以22)。这种表现很扎眼,因为在存在600 V共模电压时,使用误差这么大的探头是不可能准确测量高频15 V差分信号的。

 

 

图6。 100 MHz带宽差分探头在频率提高时CMRR额定值下降到-27 dB。

 

在计算共模抑制时,另一个考虑因素是探头和DUT之间的连接。大多数共模抑制指标只包括探头,没有考虑额外的连接选项,如大的挂勾夹。

 

由于缺乏足够的探测配件,许多电源设计人员求助于某些替代技术来执行高压侧器件测量,如先测量低压侧,使用全面仿真推导高压侧结果,考察发热的特点、EMI接近式探测,如果这些方法都行不通,那么就只能试错了。

 

高性能隔离探头

 

SiC和GaN 功率器件拥有超快速开关速率和高标称共模电压,在测试这些器件时,单端探头和差分探头的局限性变得更加明显。由于这些信号捕获问题源于接地需求,因此可行的解决方案所采用的探头技术不能依赖于接地,从而或多或少地不受共模电压的影响。这种隔离探头完全通过光纤运行,提供了大量的优势,包括高达1 GHz的带宽、大的差分电压范围、在所有频率中提供了完美的共模抑制能力。

 

在执行高压侧VGS测量时,工程师需要查看足够的波形细节,来确认仿真,评估信号特点,如与图7中表示的理想状态相比产生的振铃。高压侧VGS打开,第一个区域表示CGS门源充电时间,后面是米勒平台。在通道进行传导后,门将充电到最终值。

 

 

图7. 这是高压侧VGS理想状态的示意图。

 

图8比较了使用传统高压差分探头与使用高性能隔离探头进行高压侧VGS 测量,明显可以看出,在传统探头提供的测量基础上,很难提取有意义的信息,制订设计决策。

 

 

图8。 隔离高压差分探头提供了优化器件性能所需的信心。

 

相比之下,隔离高压测量系统为测量、表征和优化设计性能提供了所需的分辨率和可重复性。可以明显看出米勒平台及开关到节点转换的关联。这个波形清楚地显示了以前隐藏的谐振和信号细节,从而为优化性能、开发设计而又不会过于保守提供了所需的信心。

 

高压侧,低压侧交互

 

对容差紧张的GaN器件,开关节点中低压侧开关与高压侧门极之间的寄生耦合,是诊断起来比较困难的问题之一。图9显示了来自高压侧的过冲或振铃传递到低压侧的情况。如果不能执行准确的高压侧测量,这种情况是无从知晓的,其会产生大量的问题,至少会导致开关和效率损耗和劣化,最坏情况是低压侧和高压侧开关同时打开导致灾难性的故障。

 

 

图9. 能够查看实际波形,使得诊断和解决开关节点之间的寄生耦合等问题成为可能。

 

小结

 

可以肯定地说,半桥和门驱动器测量面临着诸多挑战,必须克服这些挑战,才能全面利用最新宽禁带器件的优势。这要求正确的测量技术和强大的测量解决方案。通常来说,问题的根源不在于示波器,而在于探头的选择上。高压侧门测量尤其困难,但通过了解共模抑制比,及隔离高压差分探头在存在高共模电压情况下可以怎样实现精确可靠地测量,许多相关挑战都能迎刃而解。

 

关键字:宽禁带  门驱动器  SiC  GaN 编辑:muyan 引用地址:http://news.2689mr.com/manufacture/ic508399.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:后摩尔时代EDA技术需要什么?新思科技提出双引擎模式
下一篇:SemiQ选择Silvaco TCAD设计功率器件

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

宽禁带器件为什么适合太阳能发电应用
在使用的各种形式的可再生能源中,太阳能和风力发电已成为最经常使用的能源,并承担了大部分清洁、可再生能源发电的责任。在这里,安森美产品线经理Brandon Becker解释了宽禁带半导体如何帮助太阳能发电更有效率。在太阳能和风能中,太阳能正成为主导技术,其发电量几乎是风力发电量的两倍。事实上,2017年部署的太阳能发电能力已经超过同期化石燃料发电总量——这是全球向清洁、可再生能源转变的重要里程碑。太阳能发电的发展有着巨大的市场机遇,因为它目前只占全球总发电量的12%(相当于500GW)。亚太地区是领先的地区,拥有全球一半以上的比率,中国占全球太阳能部署的三分之一。欧洲目前的产能占全球的四分之一多一点,而美国则有六分之一左右。太阳能
发表于 2020-08-26
基于SiC的大功率燃料电池DC/DC变换器,中国氢能汽车核心技术添“尖兵”
基于宽禁带半导体(碳化硅)研制的大功率燃料电池DC/DC变换器,22日在位于湖南株洲的中车时代电动汽车股份有限公司(以下简称中车电动)下线。该产品的成功研制,标志着中国氢燃料电池汽车的一项“卡脖子”技术难题得以攻克。中车电动总工程师汪伟介绍,当前,同类产品主要采用以传统硅基材料IGBT,受材料限制,硅基器件特性已接近极限,而基于宽禁带半导体(碳化硅)研制的产品,为氢能汽车燃料电池DC/DC变换器带来革命性的创新,具有“超高频”“高耐压”“低导阻”的特性。开关频率高、功率密度大是基于宽禁带半导体(碳化硅)研制的大功率燃料电池DC/DC变换器最显著的优势,相比传统基于IGBT模块变换器产品,它开关频率提升4倍以上、功率密度提升3倍以上
发表于 2020-08-25
宽禁带生态系统造就更理想的仿真环境
宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。 安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。 我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化
发表于 2020-07-17
<font color='red'>宽禁带</font>生态系统造就更理想的仿真环境
涉及宽禁带半导体材料等正威沈阳5G半导体科技园项目签约
7月7日,正威沈阳5G半导体科技园项目及国家永磁电机工程技术研究中心正威研究院项目正式签约。据沈阳网报道,正威沈阳5G半导体科技园项目,主要围绕半导体全产业链建设,包括宽禁带半导体材料及器件生产项目、硅基半导体集成电路制造和产品封测生产项目等。国家永磁电机工程技术研究中心正威研究院项目,致力于推动高性能稀土永磁电机的研发与产业化应用,将为相关企业推动科技创新、增强核心竞争力提供技术支撑。据了解,2019年,沈阳曾发布《沈阳市加快数字经济发展行动计划(2019-2021年)》(以下简称《行动计划》),沈阳市将把握大数据产业链、5G产业、工业互联网、智慧城市新体系4条主线,加快打造东北数字经济第一城。《行动计划》确立目标,到2021
发表于 2020-07-09
Yole对宽禁带半导体的应用与展望
翻译自——EEtimes Power Electronics公司在采用宽禁带(WBG)器件(如GaN和SiC)方面取得了良好的进展。虽然硅仍然主导着市场,但氮化镓和碳化硅设备的出现将很快引导技术转向更有效的解决方案。Yole估计,到2025年,SiC设备的收入将占到市场10%以上,而GaN设备的收入将占到市场的2%以上。  SiC功率器件的主要供应商包括意法半导体、Cree/Wolfspeed、Rohm、英飞凌、安森美(ON Semiconductor)和三菱电机。对于GaN领域, Yole将Power Electronics和英飞凌作为主要参与者,以及Navitas半导体
发表于 2020-06-17
Yole对<font color='red'>宽禁带</font>半导体的应用与展望
Power Integrations推出灵活、强大且可靠的IGBT驱动器
中高压逆变器应用领域门极驱动器技术的创新者Power Integrations推出1SP0351 SCALE-2™单通道+15/-10V即插即用型门极驱动器,新产品专为东芝、Westcode和ABB等厂商的新款4500V压接式IGBT (PPI)模块而开发。新的门极驱动器基于Power Integrations广泛使用的SCALE-2芯片组设计而成,非常适合HVDC VSC、STATCOM/FACTS和MVD等高可靠性应用。 1SP0351驱动器装备了动态高级有源钳位功能(DAAC)、短路保护、板载DC-DC电源、副方+15V开通电压稳压、DC-DC过载监控以及电源电压监控。此外,还提供有源米勒钳位特性。与传统解决方案
发表于 2020-03-04
Power Integrations推出灵活、强大且可靠的IGBT<font color='red'>门</font>极<font color='red'>驱动器</font>
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD。com。cn, Inc。 All rights reserved
众盈彩票APP mg游戏送彩金无需申请 申请送彩金的网站 购彩送彩金 双色球机器人 百家乐送彩金 白菜送彩金论坛 彩票大赢家 太阳城送彩金 棋牌送彩金38